Annual Drinking Water Quality Report

VILLAGE OF DANVERS

IL1130450

Annual Water Quality Report for the period of:

January 1 to December 31, 2024

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

The source of drinking water used by the Village of Danvers is Ground Water from the Mahomet Aquifer.

For more information regarding this report contact:

Name:

Brad Bode

Phone:

(309) 963-4928

Este informe contiene información muy importante sobre el agua que usted bebe. Tradúzcalo ó hable con alguien que lo entienda bien.

The Village of Danvers holds its meetings on the 1st Wednesday of each month at 7:00 PM. The meetings are held at the Danvers Township Community Building at 898 N. West St.

Source of Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Contaminants that may be present in source water include:

-Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

-Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

-Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

-Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

-Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Some people may be more vulnerable to contaminants in drinking water than the general population.

Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

Lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The drinking water supplier is responsible for providing high quality drinking water and removing lead pipes but cannot control the variety of materials used in plumbing components in your home. You share the responsibility for protecting yourself and your family from the lead in your home plumbing. You can take responsibility by identifying and removing lead materials within your home plumbing and taking steps to reduce your family's risk.

Before drinking tap water, flush your pipes for several minutes by running your tap, taking a shower, doing laundry or a load of dishes. You can also use a filter certified by an American National Standard Institute accredited certifier to reduce lead in drinking water. If you are concerned about lead in your water, you may wish to have your water tested, contact Brad Bode at (309) 963-4928. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at http://www.epa.gov/safewater/lead.

Source Water Information

Source Water Name	Type of Water	Report Status	Location
WELL 4 (47595)	GW	Active	NORTHWEST OF WATER TREATMENT PLANT
WELL 5 (01236)	GW	Active	IN PARK WEST OF WATER TREATMENT PLANT

Source Water Assessment

We want our valued customers to be informed about their water quality. If you would like to learn more, please feel welcome to attend any of our regularly scheduled meetings. The source water assessment for our supply has been completed by the Illinois EPA. If you would like a copy of this information, please stop by Village Hall or call our water operator at (309) 963-4928. To view a summary version of the completed Source Water Assessments, including: Importance of Source Water; Susceptibility to Contamination Determination; and documentation/recommendation of Source Water Protection Efforts, you may access the Illinois EPA website at http://www.epa.state.il.us/cgi-bin/wp/swap-fact-sheets.pl.

Source of Water: VILLAGE OF DANVERS: To determine the susceptibility to groundwater contamination, the Well Site Survey, published in 1991, and the 2005 new well survey were reviewed. During surveys of the Danvers source water protection area, Illinois EPA staff recorded potential sources, routes, or possible problem sites within the 200 foot minimum setback zones and 1,000 foot Phase I Wellhead Protection Areas (WHPA). No sources exist within the minimum setback zones. Four sources exist within the Phase I WHPA. Three additional sites were located within 2,000 feet of the wells. These include one active below ground fuel storage tank, an additional abandoned but in-place tank, two above ground fuel tanks, a pesticide/ herbicide warehouse and mixing facility, and an anhydrous ammonia storage area. According to information obtained in the 2005 survey, the below ground fuel tanks at the Danvers Elevator and Elementary School have been remediated. The inactive below ground fuel tank is reported to be in-place, but paved over. The Illinois EPA does not consider the source water of this facility to be susceptible to IOC, VOC, or SOC contamination. This determination is based on a number of criteria including: the land-use activities in the recharge area of the wells, the available hydrogeologic data, monitoring conducted at the wells, and monitoring conducted at the entry point to the distribution system.

Lead and Copper

Definitions:

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

Copper Range: 0.0024 to 2.8 ppm Lead Range: <1.0 to 46 ppb

To obtain a copy of the system's lead tap sampling data: Please contact Brad Bode at 309-963-4928.

Our Community Water Supply has developed a service line material inventory.

To obtain a copy of the system's service line inventory: Please contact Brad Bode at 309-963-4928.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	December 2024 April 2024	1.3 1.3	1.3 1.3	0.85 0.78	2 2	ppm	N N	Corrosion of household plumbing systems; Errosion of natural deposits.
Lead	December 2024 April 2024	0	15 15	4.0 2.9	1 0	ppb ppb	N N	Corrosion of household plumbing systems; Errosion of natural deposits.

Water Quality Test Results

Treatment Technique or TT:

Definitions:	The following tables contain scientific terms and measures, some of which may require explanation.
•	
Avg:	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
Level 1 Assessment:	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment:	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level or MCL:	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Contaminant Level Goal or MCLG	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
Maximum residual disinfectant level or MRDL:	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disinfectant level goa or MRDLG:	I The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
na:	not applicable.
mrem:	millirems per year (a measure of radiation absorbed by the body)
ppb:	micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.
ppm:	milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

A required process intended to reduce the level of a contaminant in drinking water.

Regulated Contaminants

Disinfectants and Disinfection By-Products	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Chlorine	2024	3.5	1.3 - 3.5	MRDLG = 4	MRDL = 4	ppm	N	Water additive used to control microbes.
Haloacetic Acids (HAA5)	2024	5.9	5.9 - 5.9	No goal for the total	60	ppb	N	By-product of drinking water disinfection.
Total Trihalomethane (TTHM)	s 2024	32.5	32.5 - 32.5	No goal for the total	80	dqq	N	By-product of drinking water disinfection.
Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Arsenic	2024	3.8	3.2 - 3.8	0	10	ppb	N	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.
Barium	09/11/2023	0.076	0.076 - 0.076	2	. 2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Fluoride	2024	0.73	0.48 - 0.73	4	4.0	mqq		Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
Manganese	2024	42	25 - 42	150	150	dqq		This contaminant is not currently regulated by the USEPA. However, the state regulates. Erosion of natural deposits.
Nitrate [measured as Nitrogen]	2024	0.7	0.4 - 0.7	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Nitrite [measured as Nitrogen]	2024	0.33	0.33 - 0.33	1	1	ppm	N I	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.
Sodium	09/11/2023	140	140 - 140			ppb	N E	Erosion from naturally occurring deposits. Used In water softener regeneration.